Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
J Cosmet Dermatol ; 22(4): 1185-1190, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2298300

ABSTRACT

INTRODUCTION: The skin is frequently subjected to a variety of environmental trauma and stress. It is unavoidably subjected to blue light due to the increased use of electronic equipment, including indoor lighting and digital gadgets like smartphones and laptops, which have a range of detrimental effects. The method of action and numerous harmful consequences of blue light on the skin are the main subjects of this review. MATERIALS AND METHODS: A literature search has been performed using PubMed, GoogleScholar and EmBase databases and an updated review on the topic has been presented. RESULTS: Numerous studies have shown that being exposed to blue light accelerates the aging process and produces cutaneous hyperpigmentation. It also modifies the circadian rhythm. The two main molecules that mediate cellular responses to blue light are nitric oxide (NO) and reactive oxygen species. However, the precise process is still not fully known. CONCLUSION: These negative consequences may eventually cause more general skin damage, which may hasten the aging process. At times, skin protection may be crucial for protection against blue light.


Subject(s)
Hyperpigmentation , Light , Humans , Skin , Circadian Rhythm/physiology , Reactive Oxygen Species
2.
Biosensors (Basel) ; 13(3)2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2298286

ABSTRACT

Plasmonics is the study of surface plasmons formed by the interaction of incident light with electrons to form a surface-bound electromagnetic wave [...].


Subject(s)
Light , Surface Plasmon Resonance , Nanotechnology , Electrons
3.
J Biophotonics ; 16(3): e202200203, 2023 03.
Article in English | MEDLINE | ID: covidwho-2289240

ABSTRACT

Photobiomodulation therapy (PBMT) employing laser light has been emerging as a safe strategy to challenge viruses. In this study the effect of blue and near-infrared (NIR) laser light was assessed in an in vitro model of SARS-CoV-2 infection. PBMT at blue wavelength inhibited viral amplification when the virus was directly irradiated and then transferred to cell culture and when cells already infected were treated. The NIR wavelength resulted less efficacious showing a minor effect on the reduction of the viral load. The cells receiving the irradiated virus or directly irradiated rescued their viability to level comparable to not treated cells. Virion integrity and antigenicity were preserved after blue and NIR irradiation, suggesting that the PBMT antiviral effect was not correlated to viral lipidic envelope disruption. Our results suggested that PBMT can be considered a valid strategy to counteract SARS-CoV-2 infection, at least in vitro.


Subject(s)
COVID-19 , Animals , Chlorocebus aethiops , Humans , SARS-CoV-2 , Vero Cells , Light , Lasers
4.
Biotechnol Lett ; 45(4): 551-561, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2271310

ABSTRACT

PURPOSE: We examined the inactivation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by a nitrogen-doped titanium dioxide (N-TiO2) visible-light photocatalyst that was activated via light irradiation in the natural environment and was safe for human use as a coating material. METHODS: The photocatalytic activity of glass slides coated with three types of N-TiO2 without metal or loaded with copper or silver and copper was investigated by measuring acetaldehyde degradation. The titer levels of infectious SARS-CoV-2 were measured using cell culture after exposing photocatalytically active coated glass slides to visible light for up to 60 min. RESULTS: N-TiO2 photoirradiation inactivated the SARS-CoV-2 Wuhan strain and this effect was enhanced by copper loading and further by the addition of silver. Hence, visible-light irradiation using silver and copper-loaded N-TiO2 inactivated the Delta, Omicron, and Wuhan strains. CONCLUSION: N-TiO2 could be used to inactivate SARS-CoV-2 variants, including emerging variants, in the environment.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Nitrogen Dioxide , Silver , Copper , Light , Titanium/radiation effects , Nitrogen , Catalysis
5.
Mikrochim Acta ; 190(1): 46, 2023 01 06.
Article in English | MEDLINE | ID: covidwho-2240854

ABSTRACT

The design and construction of a visible light-driven photoelectrochemical (PEC) device is described based on a CdSe-Co3O4@TiO2 nanoflower (NF). Moreover, an application to the ultrasensitive detection of viruses, such as hepatitis E virus (HEV), HEV-like particles (HEV-LPs), and SARS-CoV-2 spike protein in complicated lysate solution, is demonstrated. The photocurrent response output of a PEC device based on CdSe-Co3O4@TiO2 is enhanced compared with the individual components, TiO2 and CdSe-Co3O4. This can be attributed to the CdSe quantum dot (QD) sensitization effect and strong visible light absorption to improve overall system stability. A robust oxygen-evolving catalyst (Co3O4) coupled at the hole-trapping site (CdSe) extends the interfacial carrier lifetime, and the energy conversion efficiency was improved. The effective hybridization between the antibody and virus resulted in a linear relationship between the change in photocurrent density and the HEV-LP concentration ranging from 10 fg mL-1 to 10 ng mL-1, with a detection limit of 3.5 fg mL-1. This CdSe-Co3O4@TiO2-based PEC device achieved considerable sensitivity, good specificity, and acceptable stability and demonstrated a significant ability to develop an upgraded device with affordable and portable biosensing capabilities.


Subject(s)
COVID-19 , Cadmium Compounds , Selenium Compounds , Humans , Light , SARS-CoV-2 , Nanostructures
6.
Sensors (Basel) ; 23(3)2023 Jan 30.
Article in English | MEDLINE | ID: covidwho-2225505

ABSTRACT

This article proposes a novel method for detecting coronavirus disease 2019 (COVID-19) in an underground channel using visible light communication (VLC) and machine learning (ML). We present mathematical models of COVID-19 Deoxyribose Nucleic Acid (DNA) gene transfer in regular square constellations using a CSK/QAM-based VLC system. ML algorithms are used to classify the bands present in each electrophoresis sample according to whether the band corresponds to a positive, negative, or ladder sample during the search for the optimal model. Complexity studies reveal that the square constellation N=22i×22i,(i=3) yields a greater profit. Performance studies indicate that, for BER = 10-3, there are gains of -10 [dB], -3 [dB], 3 [dB], and 5 [dB] for N=22i×22i,(i=0,1,2,3), respectively. Based on a total of 630 COVID-19 samples, the best model is shown to be XGBoots, which demonstrated an accuracy of 96.03%, greater than that of the other models, and a recall of 99% for positive values.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , Algorithms , Communication , Light , Machine Learning
7.
Transfusion ; 63(2): 288-293, 2023 02.
Article in English | MEDLINE | ID: covidwho-2193299

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unlikely to be a major transfusion-transmitted pathogen; however, convalescent plasma is a treatment option used in some regions. The risk of transfusion-transmitted infections can be minimized by implementing Pathogen Inactivation (PI), such as THERAFLEX MB-plasma and THERAFLEX UV-Platelets systems. Here we examined the capability of these PI systems to inactivate SARS-CoV-2. STUDY DESIGN AND METHODS: SARS-CoV-2 spiked plasma units were treated using the THERAFLEX MB-Plasma system in the presence of methylene blue (~0.8 µmol/L; visible light doses: 20, 40, 60, and 120 [standard] J/cm2 ). SARS-CoV-2 spiked platelet concentrates (PCs) were treated using the THERAFLEX UV-platelets system (UVC doses: 0.05, 0.10, 0.15, and 0.20 [standard] J/cm2 ). Samples were taken prior to the first and after each illumination dose, and viral infectivity was assessed using an immunoplaque assay. RESULTS: Treatment of spiked plasma with the THERAFLEX MB-Plasma system resulted in an average ≥5.03 log10 reduction in SARS-CoV-2 infectivity at one third (40 J/cm2 ) of the standard visible light dose. For the platelet concentrates (PCs), treatment with the THERAFLEX UV-Platelets system resulted in an average ≥5.18 log10 reduction in SARS-CoV-2 infectivity at the standard UVC dose (0.2 J/cm2 ). CONCLUSIONS: SARS-CoV-2 infectivity was reduced in plasma and platelets following treatment with the THERAFLEX MB-Plasma and THERAFLEX UV-Platelets systems, to the limit of detection, respectively. These PI technologies could therefore be an effective option to reduce the risk of transfusion-transmitted emerging pathogens.


Subject(s)
COVID-19 , Methylene Blue , Humans , Methylene Blue/pharmacology , SARS-CoV-2 , COVID-19/therapy , COVID-19 Serotherapy , Light , Ultraviolet Rays , Blood Platelets , Virus Inactivation
8.
J Air Waste Manag Assoc ; 73(3): 200-211, 2023 03.
Article in English | MEDLINE | ID: covidwho-2166088

ABSTRACT

The COVID-19 pandemic has created an urgent need to utilize existing and develop new intervention technologies for SARS-CoV-2 inactivation on surfaces and in the air. Ultraviolet (UV) technology has been shown to be an effective antimicrobial intervention. Here a study was conducted to determine the efficacy of commercially available UV and blue light-based devices for inactivating HCoV-229E, a surrogate of SARS-CoV-2. The results indicate that two UV devices designed for surface disinfection, with doses of 8.07 µJ/cm2 for the 254 nm device and 20.61 µJ/cm2 for the 275 nm device, were efficient in inactivating 4.94 logs of surface inoculated HCoV-229E. Additionally, a 222 nm UV device with intended ceiling-based operation was effective in inactivating 1.7 logs of the virus inoculated on surface, with a dose of 6 mJ/cm2. A ceiling-based device designed to emit blue light at 405 nm was found to produce 89% reduction in HCoV-229E inoculated on a surface for a dose of 78 J/cm2. Finally, the UV based 222 nm device was found to produce a 90% reduction in the concentration of airborne HCoV-229E, at a 55 µJ/cm2 dose. These results are indicative of the great potential of using UV based technology for the control of SARS-CoV-2.Implications: An important avenue of arresting COVID-19 and future pandemics caused by infectious pathogens is through environmental disinfection. To this effect, the study presented here evaluates commercially available UV and blue light based antimicrobial devices for their ability to kill the human coronavirus HCoV-229E, a surrogate of SARS-CoV-2, on surfaces and in air. The results indicate that two handheld UV devices produced complete inactivation of surface viral inoculum and a UVC ceiling based device produced 1 log reduction in HCoV-229E in air. These results imply the efficacy of UV technology as an antimicrobial tool, especially for rapid disinfection of indoor air.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Humans , SARS-CoV-2 , Pandemics , Light , Ultraviolet Rays
9.
Gastrointest Endosc ; 96(6): 1072-1077, 2022 12.
Article in English | MEDLINE | ID: covidwho-2086240

ABSTRACT

BACKGROUND AND AIMS: Upper GI endoscopy is speculated to be an aerosol-generating procedure (AGP). Robust evidence exists for aerosol transmission of severe acute respiratory syndrome coronavirus 2. The quality of data available confirming aerosol generation during GI endoscopy is limited. We aimed to objectively demonstrate that GI endoscopy is an AGP and illustrate the mechanism by which the greatest risk for aerosolization of droplets during endoscopy may occur. METHODS: Aerosolized droplets generated during insertion and withdrawal of an endoscope and with passage of various tools through the endoscopic working channel using 2 experimental apparatuses modeling an upper GI tract (ie, a fluid-filled tube and a lamb esophagus) were qualitatively assessed by laser light scattering. RESULTS: Insertion and withdrawal of the upper endoscope into the upper GI tract models generated numerous aerosolized particles. A large number of brightly scattering particles were observed at the site of insertion and withdrawal of the endoscope. Passage of a cytology brush, biopsy forceps, and hemostatic clip through the working endoscope channel also generated aerosolized particles but in fewer numbers. There was no significant variation in quantity or brightness of droplets generated on testing different biopsy valve cap models or when suctioning fluid with an open versus closed biopsy valve cap. These results were reproducible over several trials. CONCLUSIONS: We illustrate in an objective manner that upper GI endoscopy is an AGP. These findings may have implications for transmission of infectious airborne pathogens outside of severe acute respiratory syndrome coronavirus 2 and can help to inform guidance on appropriate personal protective equipment use and other measures for transmission risk mitigation during GI endoscopy.


Subject(s)
Aerosolized Particles and Droplets , Endoscopy, Gastrointestinal , Animals , Aerosolized Particles and Droplets/analysis , Lasers , Light , Sheep
10.
Sci Rep ; 12(1): 1724, 2022 02 02.
Article in English | MEDLINE | ID: covidwho-1663979

ABSTRACT

This study introduces localized surface plasmon resonance (L-SPR) mediated heating filter membrane (HFM) for inactivating universal viral particles by using the photothermal effect of plasmonic metal nanoparticles (NPs). Plasmonic metal NPs were coated onto filter membrane via a conventional spray-coating method. The surface temperature of the HFM could be controlled to approximately 40-60 °C at room temperature, owing to the photothermal effect of the gold (Au) NPs coated on them, under irradiation by visible light-emitting diodes. Due to the photothermal effect of the HFMs, the virus titer of H1Npdm09 was reduced by > 99.9%, the full inactivation time being < 10 min, confirming the 50% tissue culture infective dose (TCID50) assay. Crystal violet staining showed that the infectious samples with photothermal inactivation lost their infectivity against Mardin-Darby Canine Kidney cells. Moreover, photothermal inactivation could also be applied to reduce the infectivity of SARS-CoV-2, showing reduction rate of 99%. We used quantitative reverse transcription polymerase chain reaction (qRT-PCR) techniques to confirm the existence of viral genes on the surface of the HFM. The results of the TCID50 assay, crystal violet staining method, and qRT-PCR showed that the effective and immediate reduction in viral infectivity possibly originated from the denaturation or deformation of membrane proteins and components. This study provides a new, simple, and effective method to inactivate viral infectivity, leading to its potential application in various fields of indoor air quality control and medical science.


Subject(s)
COVID-19/virology , Hot Temperature , Light , Metal Nanoparticles , Micropore Filters , SARS-CoV-2 , Surface Plasmon Resonance/methods , Virion , Virus Inactivation , Air Pollution, Indoor , Animals , Cells, Cultured , Dogs , Gold/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity
11.
Chemosphere ; 308(Pt 3): 136461, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2031191

ABSTRACT

Because of the current COVID-19 outbreak all over the world, the problem of antiviral drugs entering water has become increasingly serious. Arbidol hydrochloride (ABLH) is one of the most widely used drugs against COVID-19, which has been detected in sewage treatment plant sediments after the COVID-19 outbreak. However, there has been no report on the degradation of ABLH. In order to remove ABLH we prepared a novel photocatalyst composed of Ti3C2 MXene and supramolecular g-C3N4 (TiC/SCN) via a simple method. The properties of the material were studied by a series of characterizations (SEM, TEM, EDS, XRD, FTIR, UV-vis, DRS, XPS, TPC, PL, EIS and UPS), indicating the successful preparation of TiC/SCN. Results show that 99% of ABLH was removed within 150 min under visible light illumination by the 0.5TiC/SCN (containing 0.5% of TiC). The performance of 0.5TiC/SCN was about 2.66 times that of SCN resulting from the formation of Schottky junction. Furthermore, under real sunlight illumination, 99.2% of ABLH could be removed by 0.5TiC/SCN within 120 min, which was better than that of commercial P25 TiO2. The pH, anions (NO3- and SO42-) and dissolved organic matter (fulvic acid) could significantly affect the ABLH degradation. Moreover, three possible degradation pathways of ABLH were proposed, and the toxicities of the corresponding by-products were less toxic than ABLH. Meanwhile, findings showed that the superoxide radicals played a major role in the photocatalytic degradation of ABLH by 0.5TiC/SCN. This study provides a well understanding of the mechanism of ABLH degradation and provides a valuable reference for the treatment of ABLH in water.


Subject(s)
COVID-19 , Titanium , Antiviral Agents , Catalysis , Humans , Indoles , Light , Sewage , Sulfides , Superoxides , Titanium/chemistry , Water
12.
J Drugs Dermatol ; 21(9): 962-966, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2026701

ABSTRACT

Although blue light has been present in our lives for decades, this type of visible light has recently become a topic of significant interest as we shift to a greater percentage of our time spent in front of light-emitting devices. Especially during the Covid pandemic, as many companies pivoted from in-person meetings to discussions conducted via video conference, the impact of consistent visible light exposure from artificial sources became more relevant than ever in our daily lives. As dermatologists and skin health experts, we often get asked by patients if the light emitted from computers, smart phones, and overhead light has a significant impact on our skin. As leaders in skin knowledge, it is important to have a thorough and evidence-based understanding of the role that visible light, and blue light in particular, plays in skin health and certain dermatoses. In this article, we provide a comprehensive review of blue light and how it impacts our skin. We discuss the role of blue light in skin pigmentation and skin damage. Additionally, we discuss measures that can be taken to protect our skin from blue light. Understanding the role of blue light in our daily lives, and the role of sunscreens and antioxidants in visible light protection, is important information that we can impart to our patients. J Drugs Dermatol. 2022;21(9):962-966. doi:10.36849/JDD.6374.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Light , Skin , Skin Pigmentation , Sunscreening Agents
14.
Sensors (Basel) ; 22(13)2022 Jun 27.
Article in English | MEDLINE | ID: covidwho-1934197

ABSTRACT

Nowadays, the disinfection of classrooms, shopping malls, and offices has become an important part of our lives. One of the most effective disinfection methods is ultraviolet (UV) radiation. To ensure the disinfection device has the required wavelength spectrum, we need to measure it with dedicated equipment. Thus, in this work, we present the development of a UV spectrum detector capable of identifying UV wavelength spectrums, with a wide range of probes and the ability to transmit data to a PC for later evaluation of the results. The device was developed with four UV sensors: one for UV-A, one for UV-B, one for UV-C, and one with a wide range of detection of UVA, with a built-in transimpedance amplifier. An Arduino Nano development board processes all the acquired data. We developed a custom light source containing seven UV LEDs with different central wavelengths to calibrate the device. For easy visualization of the results, custom PC software was developed in the Processing programming medium. For the two pieces of electronics-the UV detector and calibration device-3D-printed housings were created to be ergonomic for the end-user. From the price point of view, this device is affordable compared to what we can find on the market.


Subject(s)
Water Purification , Disinfection/methods , Electronics , Light , Ultraviolet Rays , Water Purification/methods
15.
Adv Mater ; 34(35): e2204355, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1929751

ABSTRACT

Noncontact interactive technology provides an intelligent solution to mitigate public health risks from cross-infection in the era of COVID-19. The utilization of human radiation as a stimulus source is conducive to the implementation of low-power, robust noncontact human-machine interaction. However, the low radiation intensity emitted by humans puts forward a high demand for photodetection performance. Here, a SrTiO3-x /CuNi-heterostructure-based thermopile is constructed, which features the combination of high thermoelectric performance and near-unity long-wave infrared absorption, to realize the self-powered detection of human radiation. The response level of this thermopile to human radiation is orders of magnitude higher than those of low-dimensional-materials-based photothermoelectric detectors and even commercial thermopiles. Furthermore, a touchless input device based on the thermopile array is developed, which can recognize hand gestures, numbers, and letters in real-time. This work offers a reliable strategy to integrate the spontaneous human radiation into noncontact human-machine interaction systems.


Subject(s)
COVID-19 , Gestures , Humans , Light
16.
J Photochem Photobiol B ; 233: 112503, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1907356

ABSTRACT

Numerous studies have demonstrated that SARS-CoV-2 can be inactivated by ultraviolet (UV) radiation. However, there are few data available on the relative efficacy of different wavelengths of UV radiation and visible light, which complicates assessments of UV decontamination interventions. The present study evaluated the effects of monochromatic radiation at 16 wavelengths from 222 nm through 488 nm on SARS-CoV-2 in liquid aliquots and dried droplets of water and simulated saliva. The data were used to generate a set of action spectra which quantify the susceptibility of SARS-CoV-2 to genome damage and inactivation across the tested wavelengths. UVC wavelengths (≤280 nm) were most effective for inactivating SARS-CoV-2, although inactivation rates were dependent on sample type. Results from this study suggest that UV radiation can effectively inactivate SARS-CoV-2 in liquids and dried droplets, and provide a foundation for understanding the factors which affect the efficacy of different wavelengths in real-world settings.


Subject(s)
COVID-19 , SARS-CoV-2 , Disinfection/methods , Humans , Light , Ultraviolet Rays , Virus Inactivation/radiation effects
17.
Sci Rep ; 12(1): 6580, 2022 04 21.
Article in English | MEDLINE | ID: covidwho-1805652

ABSTRACT

The development of effective pathogen reduction strategies is required due to the rise in antibiotic-resistant bacteria and zoonotic viral pandemics. Photodynamic inactivation (PDI) of bacteria and viruses is a potent reduction strategy that bypasses typical resistance mechanisms. Naturally occurring riboflavin has been widely used in PDI applications due to efficient light-induced reactive oxygen species (ROS) release. By rational design of its core structure to alter (photo)physical properties, we obtained derivatives capable of outperforming riboflavin's visible light-induced PDI against E. coli and a SARS-CoV-2 surrogate, revealing functional group dependency for each pathogen. Bacterial PDI was influenced mainly by guanidino substitution, whereas viral PDI increased through bromination of the flavin. These observations were related to enhanced uptake and ROS-specific nucleic acid cleavage mechanisms. Trends in the derivatives' toxicity towards human fibroblast cells were also investigated to assess viable therapeutic derivatives and help guide further design of PDI agents to combat pathogenic organisms.


Subject(s)
COVID-19 , Photochemotherapy , Bacteria , Escherichia coli , Humans , Light , Photosensitizing Agents/chemistry , Reactive Oxygen Species/pharmacology , Riboflavin/pharmacology , SARS-CoV-2
18.
Int Ophthalmol ; 42(9): 2847-2854, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1772961

ABSTRACT

PURPOSE: To characterize alterations in pupillary light reflex responses in subjects following coronavirus disease 2019 (COVID-19), especially those with long-COVID. METHODS: Thirty-five subjects with previous COVID-19 and 30 healthy control participants were enrolled in this cross-sectional comparative study. An infrared dynamic pupillometry system (MonPack One; Metrovision, France) was used to quantify pupillary light responses. The National Institute for Health and Care Excellence (NICE) long-COVID questionnaire was used to identify persisting symptoms at least 4 weeks after acute COVID-19. RESULTS: The median time after the diagnosis of acute COVID-19 was 4.0 (2.0-5.0) months. There was an increase in the latency of pupil contraction (P = 0.001) and a reduction in the duration of pupil contraction (P = 0.039) in post-COVID-19 subjects compared to healthy controls. No significant differences were observed in the initial pupil diameter, amplitude and velocity of pupil contraction or latency, velocity and duration of pupil dilation. Long-COVID was present in 25/35 (71%) subjects and their duration of pupil contraction was reduced compared to subjects without long-COVID (P = 0.009). The NICE long-COVID questionnaire total score (ρ = - 0.507; P = 0.002) and neurological score (ρ = - 0.412; P = 0.014) correlated with the duration of pupil contraction and the total score correlated with the latency of dilation (ρ = - 0.352; P = 0.038). CONCLUSION: Dynamic pupillometry reveals significant alterations in contractile pupillary light responses, indicative of parasympathetic dysfunction after COVID-19.


Subject(s)
COVID-19 , COVID-19/complications , Cross-Sectional Studies , France , Humans , Light , Pupil , Reflex, Pupillary , Post-Acute COVID-19 Syndrome
19.
Environ Sci Technol ; 56(7): 4295-4304, 2022 04 05.
Article in English | MEDLINE | ID: covidwho-1735181

ABSTRACT

To address the challenge of the airborne transmission of SARS-CoV-2, photosensitized electrospun nanofibrous membranes were fabricated to effectively capture and inactivate coronavirus aerosols. With an ultrafine fiber diameter (∼200 nm) and a small pore size (∼1.5 µm), optimized membranes caught 99.2% of the aerosols of the murine hepatitis virus A59 (MHV-A59), a coronavirus surrogate for SARS-CoV-2. In addition, rose bengal was used as the photosensitizer for membranes because of its excellent reactivity in generating virucidal singlet oxygen, and the membranes rapidly inactivated 97.1% of MHV-A59 in virus-laden droplets only after 15 min irradiation of simulated reading light. Singlet oxygen damaged the virus genome and impaired virus binding to host cells, which elucidated the mechanism of disinfection at a molecular level. Membrane robustness was also evaluated, and in general, the performance of virus filtration and disinfection was maintained in artificial saliva and for long-term use. Only sunlight exposure photobleached membranes, reduced singlet oxygen production, and compromised the performance of virus disinfection. In summary, photosensitized electrospun nanofibrous membranes have been developed to capture and kill airborne environmental pathogens under ambient conditions, and they hold promise for broad applications as personal protective equipment and indoor air filters.


Subject(s)
COVID-19 , Nanofibers , Animals , COVID-19/prevention & control , Disinfection , Light , Mice , SARS-CoV-2
20.
Int J Mol Sci ; 23(4)2022 Feb 12.
Article in English | MEDLINE | ID: covidwho-1715397

ABSTRACT

The state of red blood cells (RBCs) and their functional possibilities depend on the structural organization of the membranes. Cell morphology and membrane nanostructure are compositionally and functionally related to the cytoskeleton network. In this work, the influence of agents (hemin, endogenous oxidation during storage of packed RBCs, ultraviolet (UV) radiation, temperature, and potential of hydrogen (pH) changes) on the relationships between cytoskeleton destruction, membrane nanostructure, and RBC morphology was observed by atomic force microscope. It was shown that the influence of factors of a physical and biochemical nature causes structural rearrangements in RBCs at all levels of organization, forming a unified mechanism of disturbances in relationships "cytoskeleton-membrane nanosurface-cell morphology". Filament ruptures and, consequently, large cytoskeleton pores appeared. The pores caused membrane topological defects in the form of separate grain domains. Increasing loading doses led to an increase in the number of large cytoskeleton pores and defects and their fusion at the membrane nanosurfaces. This caused the changes in RBC morphology. Our results can be used in molecular cell biology, membrane biophysics, and in fundamental and practical medicine.


Subject(s)
Cell Membrane/ultrastructure , Cytoskeleton/ultrastructure , Erythrocytes/pathology , Adult , Cells, Cultured , Erythrocytes/drug effects , Erythrocytes/radiation effects , Female , Hemin/toxicity , Humans , Hydrogen-Ion Concentration , Light/adverse effects , Male , Middle Aged , Oxidants/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL